organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

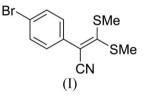
Tao Peng,^{a,b} Ying Fu,^{a,b} Chu-Yi Yu,^a* Li-Ben Wang^a and Zhi-Tang Huang^a

^aBeijing National Laboratory for Molecular Science (BNLMS), Laboratory for Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China, and ^bGraduate University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

Correspondence e-mail: yucy@iccas.ac.cn

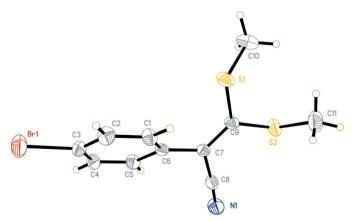
Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.007 Å R factor = 0.053 wR factor = 0.145 Data-to-parameter ratio = 15.9


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-(4-Bromophenyl)-3,3-bis(methylsulfanyl)prop-2-enenitrile

In the title compound, $C_{11}H_{10}BrNS_2$, the molecules are linked into sheets stabilized by $C-H\cdots N$, $C-Br\cdots Br$ and $C-S\cdots Br$ short contacts. Received 19 June 2006 Accepted 7 July 2006


Comment

The title compound, (I) (Fig. 1), is an intermediate in the synthesis of heterocyclic ketene aminals which are powerful and versatile intermediates for the synthesis of a wide variety of fused heterocyclic compounds (Wang & Huang, 2002).

In (I), the bond lengths and angles are in normal ranges (Allen *et al.*, 1987). The C7–C9 bond [1.343 (7) Å] is shorter than the C7–C8 [1.443 (7) Å] and C6–C7 [1.479 (7) Å] bonds, indicating its double-bond nature. The shortening of bonds C9–S1 [1.743 (5) Å] and C9–S2 [1.764 (5) Å] with respect to bonds C10–S1 [1.809 (6) Å] and C11–S2 [1.808 (6) Å] is attributed to $d-\pi$ interactions between sulfur and the olefin.

In the packing of the title compound, there is one intermolecular C5–H5···N1ⁱ hydrogen bond [H5···N1ⁱ = 2.69 Å, C5···N1ⁱ = 3.379 (7) Å and C5–H5···N1ⁱ = 131°; symmetry code: (i) 1 - x, $-\frac{1}{2} + y$, $\frac{1}{2} - z$], one intermolecular C3– Br···Brⁱⁱ short contact [Br···Brⁱⁱ = 3.515 (3) Å, C3···Brⁱⁱ =

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

© 2006 International Union of Crystallography All rights reserved 5.402 (7) Å and C3···Br···Brⁱⁱ = 168 (2)°; symmetry code: (ii) 1 - x, -1 - y, 1 - z] and an intermolecular C9–S1···Br short contact [S1···Br = 3.684 (3) Å, C9···Br = 5.400 (6) Å and C9– Br···Br = 168 (2)°] (Fig. 2).

Experimental

The title compound, (I), was prepared according to the procedure of Liljefors & Sandström (1970). Suitable crystals were obtained by evaporation of an acetone solution (m.p. 346 K).

Z = 4

 $D_x = 1.596 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

 $\mu = 3.59 \text{ mm}^{-1}$

T = 294 (2) K

 $R_{\rm int} = 0.065$

 $\theta_{\rm max} = 25.0^\circ$

Block, colorless

0.20 \times 0.18 \times 0.12 mm

6007 measured reflections

2196 independent reflections

1543 reflections with $I > 2\sigma(I)$

Crystal data

 $C_{11}H_{10}BrNS_2$ $M_r = 300.23$ Monoclinic, $P2_1/c$ a = 8.558 (10) Å b = 7.285 (9) Å c = 20.04 (2) Å $\beta = 90.010 (8)^{\circ}$ $V = 1249 (2) Å^{3}$

Data collection

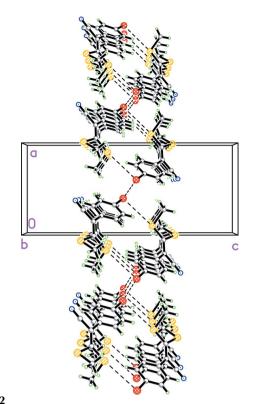
Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.534, T_{\rm max} = 0.673$

Refinement

 Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0554P)^2]$
 $R[F^2 > 2\sigma(F^2)] = 0.053$ + 1.8209P]

 $wR(F^2) = 0.145$ where $P = (F_o^2 + 2F_c^2)/3$

 S = 1.09 $(\Delta/\sigma)_{max} < 0.001$


 2196 reflections
 $\Delta\rho_{max} = 0.68$ e Å⁻³

 138 parameters
 $\Delta\rho_{min} = -0.85$ e Å⁻³

 H-atom parameters constrained
 $\Delta\rho_{min} = -0.85$ e Å⁻³

H atoms were constrained to idealized geometry using a riding model; $U_{iso}(H) = 1.2U_{eq}(C)$ and C-H = 0.95 (CH group) or 0.99 Å (CH₂ groups), with $U_{iso}(H) = 1.2$ (aromatic C) or 1.5 (methyl C) times $U_{eq}(C)$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics:

Figure 2

The packing of (I). The dotted lines indicate $Br \cdots Br$ and $S \cdots Br$ short contacts.

SHELXTL (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Liljefors, T. & Sandström, J. (1970). Acta Chem. Scand. 24, 3109-3115.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Wang, M. & Huang, Z. (2002). Prog. Nat. Sci. 12, 290-298.